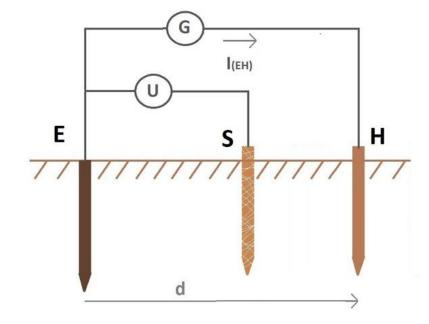
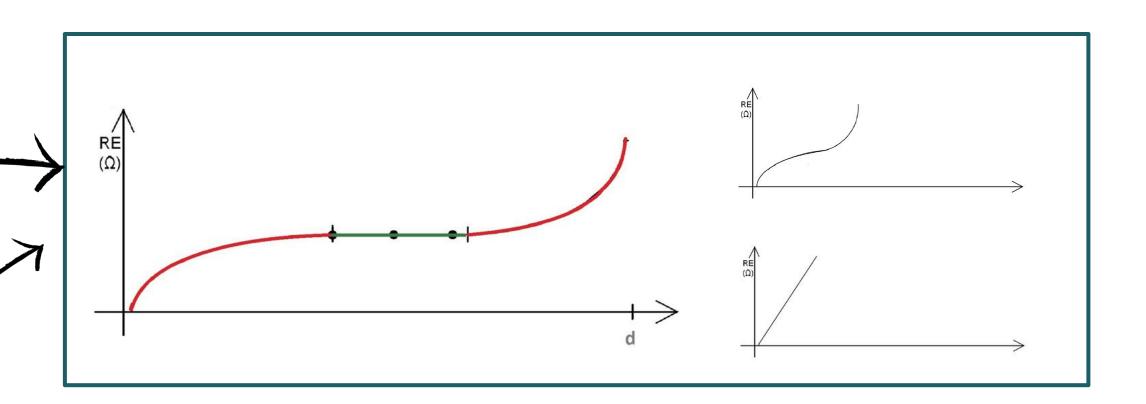


Métodos de Medição

Sistema de Terras

ANABELA RIBEIRO anabela@messara.pt




Método Queda de Potêncial (3P)

Legislação portuguesa

1 Corte de Energia

2 Eletrodos auxiliares <u>fora de área de</u> influência

-> Mínimo S=20m H=40m; d=10r-30r (RSSPTS)

Aplicação da Lei de Ohm e temos o valor da resistência de terra. $R_{E} = \frac{U_{B}}{I_{A}}$

S-6m para a frente e para trás (RTIEBT)
 (Método simplificado)

- Se não for possível efetuar corte de energia?
- Se não tiver espaço para a colocação dos elétrodos?

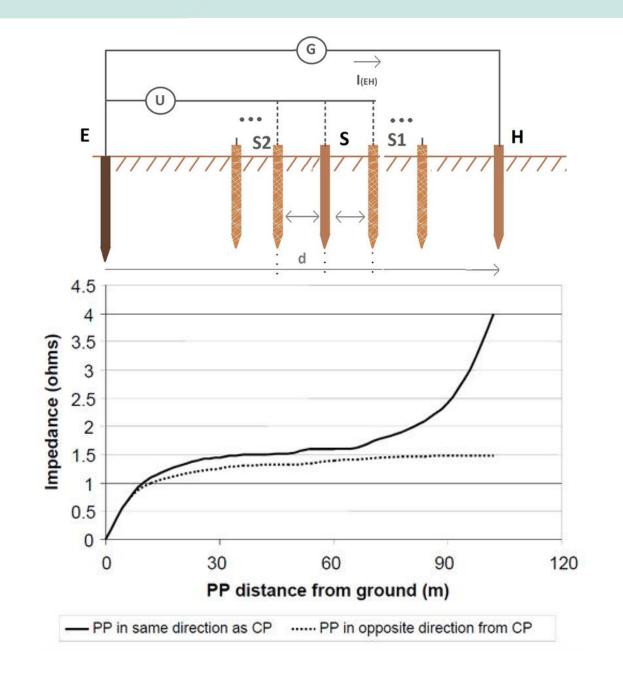
- Há mais métodos que podem ser aplicados e que sejam válidos?
- Quais são os métodos mais fiáveis? E para que tipo de elétrodos/sistemas de terra?

- Qual o melhor método para elétrodos de pequena dimensão? E para grande dimensão?
- Onde instalo os eletrodos auxiliares? Em linha reta, com angulo, etc?

Métodos de Medição

Entre outros....

Com corte	Sem corte de Energia:		
> <u>Método Queda de Potêncial (3P)</u>	> <u>Método "Slope"</u>	> <u>Método da Pinça</u>	
> <u>Método de 4P</u>	> <u>Método "Intersecting Curves"</u>	> <u>Método das duas Pinças</u>	
> <u>Método dos 62 %</u>	> <u>Método "Star Delta"</u>	> <u>Método Seletivo (3P+Pinça)</u>	



Método Queda de Potêncial (3P)

Original

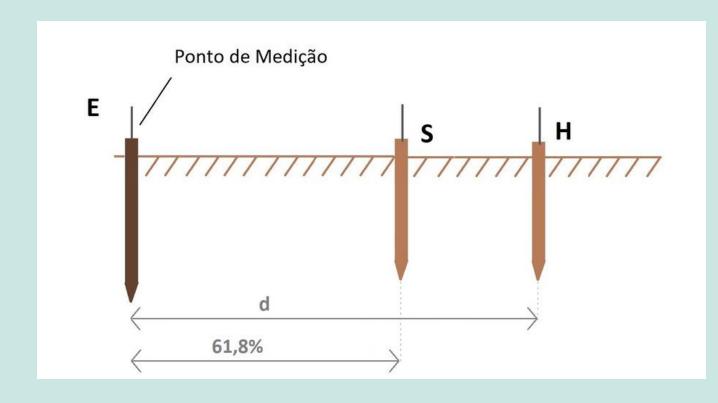
Desenho da curva R/d. Alteração do valor d até obter uma curva viável

- --> Método eficaz e confiável
- "d" elevado para eletrodos de média/grande dimensão
- Trabalhoso medição de vários pontos para obter uma curva viável

• Para minimizar erros "do acoplamento mutuo AC" - colocar ângulo entre S e H de 90°C

<u>Simplificado</u>

Média dos valores obtidos de R para 3 localizações de S


- --> Recomendado para elétrodos de pequena/media dimensão
- --> Mais fácil e rápido
- Ineficaz quando se desconhece o centro do elétrodo
- --> Menos preciso que o original
- --> R(medido)>R(real)

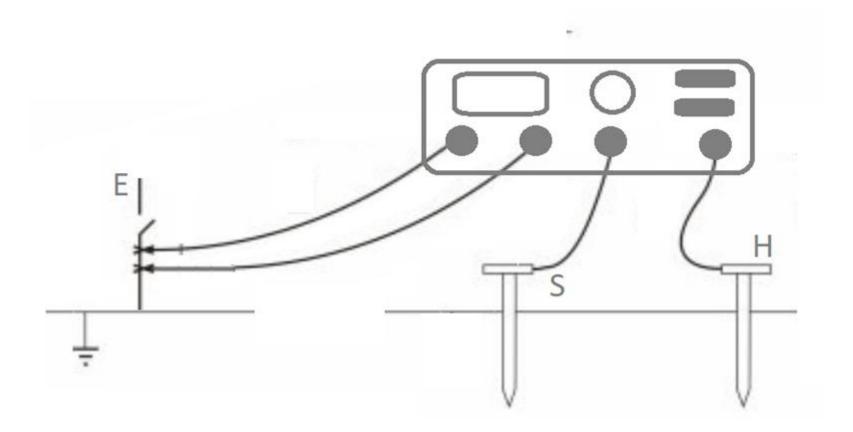
Método dos 62%

Fácil e rápido, uma vez que apenas é necessário efetuar uma medição!

CONDIÇÕES MINIMAS:

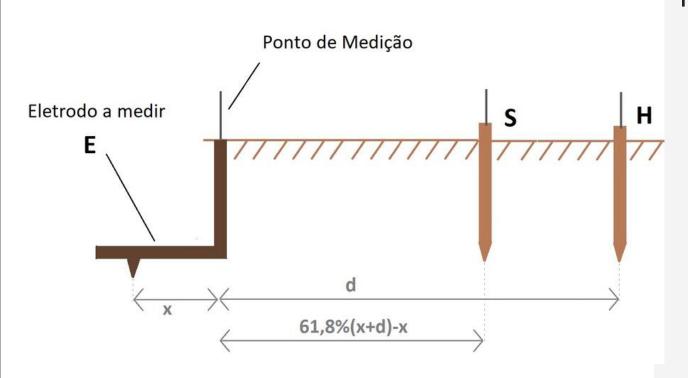
- Corte de energia
- Corrente I(E) = I (H)
- Eletrodo com hemisfério equivalente com centro elétrico
- Solo homogéneo (resistividade uniforme)
- Elétrodos auxiliares em linha reta, fora da área de influência
- 61,8% é à distância entre H e o centro do elétrodo E

- Assume condições perfeitas
- Garantir uma distância suficiente entre E e H
- Ineficaz se o centro elétrico for desconhecido
- Menos preciso



Método 4P

- --> Semelhante ao método 3P
- Reforço de uma 2ª ligação ao elétrodo E
- Elimina resistência dos cabos de medição
- Método ideal para medição de elétrodos com baixo valor de resistência de terra



Método Curvas de Interseção

Medição da resistência de terra para vários pontos de X e d

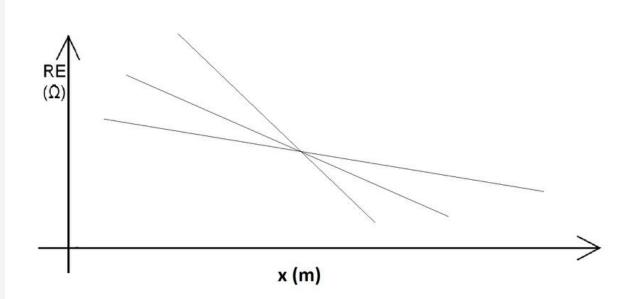
#

Indicado para medição de:

- eletrodos de grande dimensão
- centro do elétrodo desconhecido

#

Pode não cruzar-se num só ponto (incerteza)


#

Tem uma distancia mínima e máxima

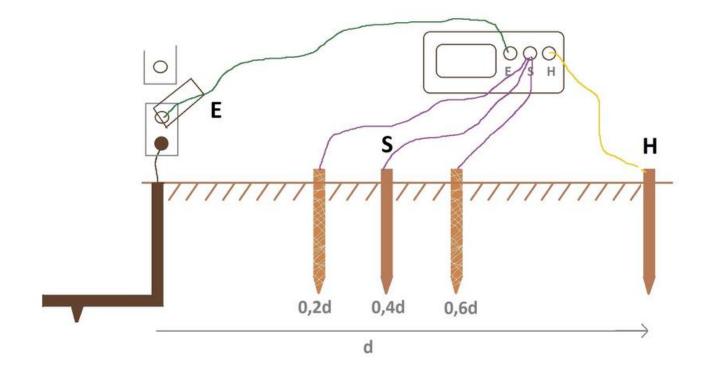
Método eficaz mas trabalhoso

Elaborar as curvas:

A interseção das curvas - valor de R e X

Método "Slope"

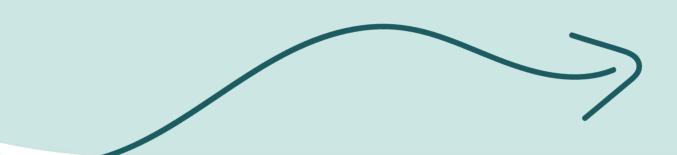
Procedimento de medição


01 Ponto de Medição do elétrodo

02 Medição das Resistências: R1-0,2d R2-0,4d R3-0,6d

Cálculo do coeficiente: $u = \frac{R3-R2}{R2-R1}$

Extrair distância do eletrodo S


05 Medir Resistencia

μ	PP _T /CP	μ	PP _T /CP	μ	PP _T /CP
0.40	0.643	0.80	0.580	1.20	0.494
0.41	0.642	0.81	0.579	1.21	0.491
0.42	0.640	0.82	0.577	1.22	0.488
0.43	0.639	0.83	0.575	1.23	0.486
0.44	0.637	0.84	0.573	1.24	0.483
0.45	0.636	0.85	0.571	1.25	0.480
0.46	0.635	0.86	0.569	1.26	0.477
0.47	0.633	0.87	0.567	1.27	0.474
0.48	0.632	0.88	0.566	1.28	0.471
0.49	0.630	0.89	0.564	1.29	0.468
0.50	0.629	0.90	0.562	1.30	0.465
0.51	0.627	0.91	0.560	1.31	0.462
0.52	0.626	0.92	0.588	1.32	0.458
0.53	0.624	0.93	0.556	1.33	0.455
0.54	0.623	0.94	0.554	1.34	0.452

Método "Slope"

VANTAGENS:

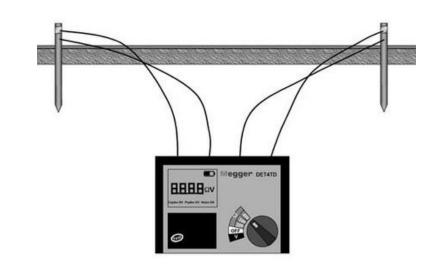
- Indicado para medição de sistema de terra de grandes dimensões
- Possibilidade de redução significativa da distancia em comparação com o método de queda de tensão

- Caso o valor de u não aparecer na tabela, tem que ser afastado ou alterada a direção do eletrodo H: 0,4<u<1,6
- Confirmação só pode ser obtida após repetição de medição para outras distâncias/direções
- Para ter garantia do resultado é um método trabalhoso, que envolve cálculos



Método Star Delta

- --> Sem espaço para colocação de elétrodos
- Quando não é possível aplicar o método Slope ou Intersing Curves
- Permite a obtenção do valor da resistência do elétrodo a partir de medições a dois pontos e com cálculos
- --> É muito trabalhoso



$$R_{1} = \frac{1}{3} \left[\frac{(R_{12} + R_{13} + R_{14}) - (R_{23} + R_{24} + R_{42})}{2} \right]$$

$$R_{1} = \frac{1}{2} (R_{12} + R_{13} - R_{23})$$

$$R_{1} = \frac{1}{2} (R_{12} + R_{14} - R_{42})$$

$$R_{1} = \frac{1}{2} (R_{13} + R_{14} - R_{34})$$

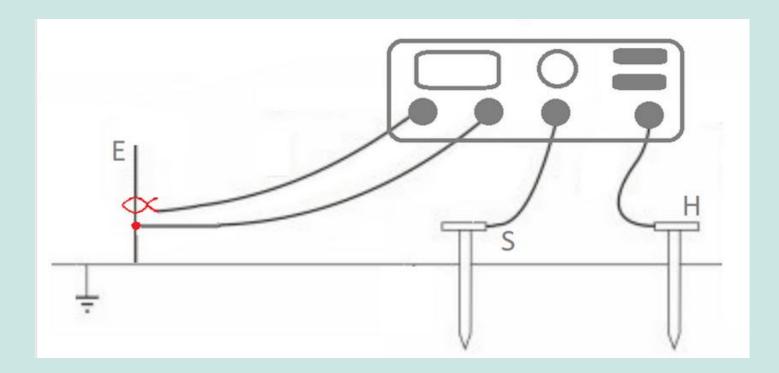
$$R_{2} = \frac{1}{2}(R_{12} + R_{23} - R_{13}) \qquad R_{3} = \frac{1}{2}(R_{23} + R_{34} - R_{42})$$

$$R_{2} = \frac{1}{2}(R_{12} + R_{42} - R_{14}) \qquad R_{4} = \frac{1}{2}(R_{14} + R_{42} - R_{12})$$

$$R_{2} = \frac{1}{2}(R_{23} + R_{42} - R_{34}) \qquad R_{4} = \frac{1}{2}(R_{14} + R_{34} - R_{13})$$

$$R_{3} = \frac{1}{2}(R_{13} + R_{23} - R_{12}) \qquad R_{4} = \frac{1}{2}(R_{42} + R_{34} - R_{23})$$

$$R_{3} = \frac{1}{2}(R_{13} + R_{34} - R_{14})$$


Fonte: [05]

Método Seletivo 3P+Pinça

Medição sem corte de energia

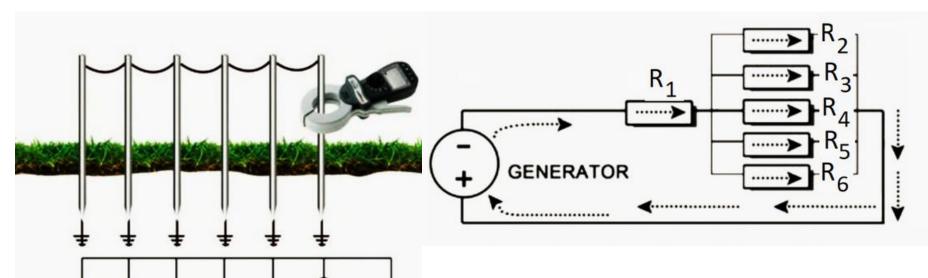
PROCEDIMENTO DE MEDIÇÃO:

• Utilização de 2 elétrodos auxiliares e Pinça

VANTAGENS:

- Igual que o método das quedas de tensão, excluindo a necessidade de corte de energia
- Permite a medição de elétrodos múltiplos, com a medição individual de cada elétrodo

- Existência de ligações à terra em paralelo muito próximos do elétrodo de terra a medir
- Garantir uma distancia suficiente entre E e H por forma a não existir influência



Método Pinça

Resistencia medida para as seguintes situações:

- # R1=R2=..R6=10ohm: R=12ohm
- # R1=R2=..R60=10ohm: R=10,17ohm
- # R1=100ohm R2=..R6=10ohm: R=102ohm
- # R1=R2=..R5=10ohm R6=100ohm: R=12,44ohm
- # R1=R2=10ohm: R=20ohm

Gera uma tensão, mede a corrente e calcula a resistência pela lei de ohm

$$R = R_1 + \frac{1}{\frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4} + \frac{1}{R_5} + \frac{1}{R_6}}$$

Fonte:[08]

Método Pinça

VANTAGENS:

- Medição rápida e facil: sem corte de Energia e sem elétrodos auxiliares
- O resultado será sempre um valor superior ao real valor da resistência do elétrodos (Rloop/Requivalente)

- --> Utilização apenas com elétrodos paralelos
- --> não é possivel comprovar o resultado
- Localização errada do ponto de medição da pinça pode dar valores de resistência errados
- Quanto menor for o numero de eletrodos paralelos maior será a diferença entre a resistência (loop) medida e a resistência real do elétrodo

Método 2 Pinças

Principio de funcionamento igual que o método da pinça

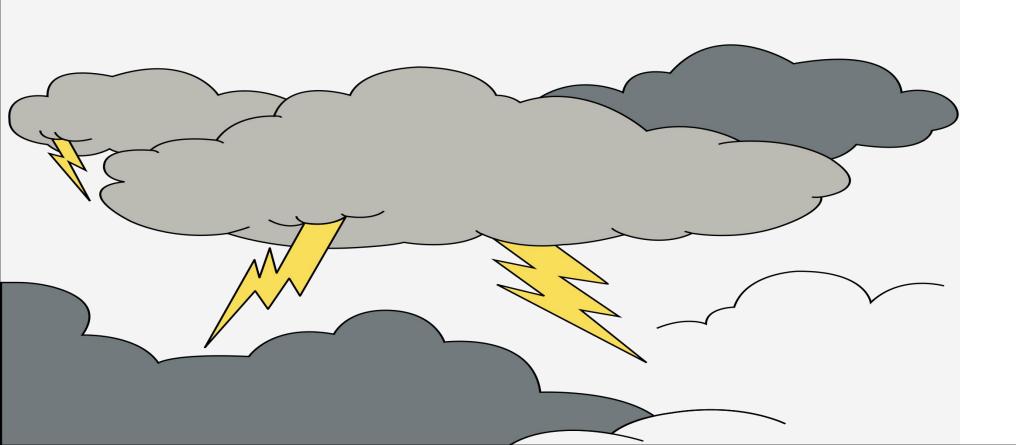
VANTAGENS:

- --> todas as mencionadas no método da pinça
- garantir a mínima distancia entre as duas pinças (fabricante)

Impedância da malha de defeito

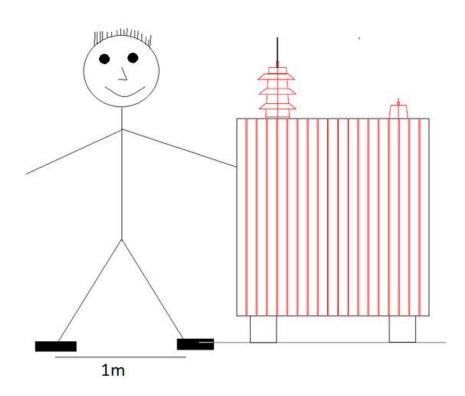
APLICAÇÃO:

- Quando não é possível medir resistência de terra com estacas ou com pinça
- IEC 30364-6 "Note: if t is not possible to measure RA, this measuremente can be replacede by a fault loop measuremente as in a) 1)
- A medição é superior ao valor da resistência de terra
- Permite validar o valor de resistência de terra obtido por outro método de medição



Outros métodos de validação de terras

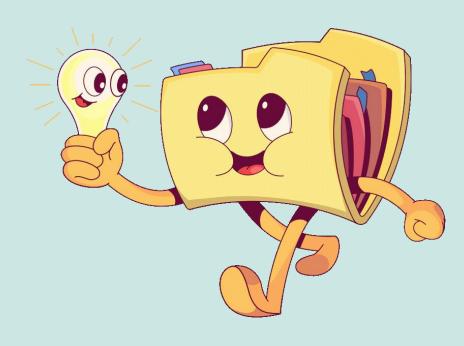
Impedância de terra (Para-Raios)


"O raio é um fenómeno de alta frequência e, a este respeito, a avaliação adequada de uma rede de terras é feita através de sua impedância e não de sua resistência" [09]

Medição de Tensão de Passo e de Contacto

Mesmo tendo um bom valor de resistência de terra, a segurança apenas está assegurada com as medições de tensão de passo e contacto

Bibliografia & Referências



- 01 Regulamento de Segurança de Redes de Distribuição de Energia Eléctrica em Baixa Tensão, Decreto Regulamentar n.º 90/84
- 02 Regulamento de Segurança de Subestações e Postos de Transformação e de Seccionamento
- 03 Regras Técnicas de Instalações Elétricas de Baixa Tensão
- 04 IEEE Std 81-2012, "IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Grounding System", New York, IEEE Power and Energy Society, 5 Dezembro de 2012
- 05 Megger, "Getting Down to Earth, A practical guide to earth resistance testing", Woburn MA, Test Equipment Depot, 2020
- 06 Principles and Practice of Earth Electrode Measurements
- 07 Jefrey R. Jowet; "Ground Testing Procedures Megger", netaworldjournal, November 1, 2020
- 08 https://electrical-engineering-portal.com/measure-ground-resistance-clamp-meter, acedido em 1 de Maio 2023 (ajustado)
- 09- Nota Técnica n.º 29 Para-Raios, Segurança contra incêncio em Edificios, Autoridade Nacional de Emergência e proteção civil, Outubro de 2022

Conclusão

É necessário conhecer os métodos, sua aplicação, limitações, vantagens e desvantagens

Deve ser feita a escolha do método de medição em função do tipo de elétrodo a medir, das condições e características do local da medição/instalação

Para ter certeza do valor da resistência de terra podemos utilizar mais do que um método de medição

Caso tenha dificuldade, contrate uma empresa especializada neste assunto.

Exemplo: MESSARA- Qualidade e Segurança Eléctrica, Lda.

Obrigada!

www.messara.pt | geral@messara.pt